

## **CSK and CSG IMAGE CALIBRATION**

The radiometric calibration of SAR images consists in the evaluation of the radiometric values. These are independent of geometry and radar characteristics and dependent only on the terrain scattering features.

The effects that must be considered are:

- Range spreading loss effect
- Antenna pattern gain compensation
- Incidence angle effect

In the COSMO-SkyMed SCS\_B, DGM\_B, GEC\_B and GTC\_B images, all factors different pixel by pixel have been already corrected. So the square of the Digital Numbers (DN) of the images are related to the terrain backscattering coefficients  $\sigma^0$  through a constant number.

**Note**: all the data considered above use the WGS84 ellipsoid for the terrain correction, apart from GTC\_B. The "terrain corrected" products (GTC\_B) are processed using a Digital Elevation Model (DEM) which is used to evaluate the geometric calibration factors too.





## SIGMA NAUGHT ( $\sigma^0$ ) EVALUATION

In the following, the steps that must be carried out to obtain backscattering coefficient image starting from DN are described.

The necessary parameters involved in the backscattering image generation are listed in a subsequent table. They could be extracted from metadata.

**Note**: the  $\sigma^0$  coefficients are defined in ground. So, extraction of  $\sigma^0$  coefficients from SCS images (level 1A) means to have ground projected values in a slant geometry.

This must be taken into account if the backscattering image would be extracted. The ground projection is the natural projection in which backscattering coefficients are defined, so it's better to use DGM\_B images if you need calibrated images values.

For the image levels listed above and for any acquisition mode, the steps to obtain the calibrated values from the DN of image are the following:

| Step | Conditions                | Description                          | Formula                                    |
|------|---------------------------|--------------------------------------|--------------------------------------------|
| 1    |                           | Evaluate the power image             | $P(i,j) = \left  img_{inp}(i,j) \right ^2$ |
| 2    | Rsl <sub>flag</sub> ≠NONE | Remove the Reference Slant Range     | $Fact = R_{ref}^{2*R_{\exp}}$              |
| 3    | Inc <sub>flag</sub> ≠NONE | Remove the Reference Incidence Angle | $Fact' = Fact * \sin(\alpha_{ref})$        |
| 4    |                           | Remove the Rescaling Factor          | $Fact'' = Fact' \cdot \frac{1}{F^2}$       |
| 5    | $K_{flag}=0$              | Apply the Calibration Factor         | $F_{Tot} = Fact'' \cdot \frac{1}{K}$       |
| 6    |                           | Apply the total scaling factor       | $\sigma^{0}(i,j) = P(i,j) * F_{Tot}$       |

Tab. 1: steps for  $\sigma^0$  evaluation

To get  $\sigma^0$  in dB:

$$\sigma^{0}(i,j)_{dB} = 10 \log_{10} \sigma^{0}(i,j)$$

**Note**: When starting from complex products (SCS\_B)\*, particular attentions must be taken in power calculation in order to avoid artefacts generation. Generally speaking, the power image evaluation must be done considering also an interpolation by two in order to enlarge the image spectral support; then the first step of Tab.1 can be applied. The  $\sigma^0$  obtained as described in Tab. 1: steps for  $\sigma^0$  evaluation

is the evaluation of the single pixel backscattering coefficient; in order to have a more significant result a running window average has to be done for  $\sigma^0$  evaluation.

The form of the final backscattering image is obtained with a formula like the following one:

$$\left\langle \sigma^{0}(r,c)\right\rangle = \sum_{i,j}^{wid_{r},wid_{c}} \sigma^{0}(i+r\cdot wid_{r} + \frac{wid_{r}}{2}, j+c\cdot wid_{c} + \frac{wid_{c}}{2})$$





or, in logarithmic units:

$$\left\langle \sigma^{\scriptscriptstyle 0}(r,c) \right\rangle_{\scriptscriptstyle dB} = 10 \log_{\scriptscriptstyle 10} \left\langle \sigma^{\scriptscriptstyle 0}(r,c) \right\rangle$$

**Note**: SCS\_U (Unbalanced level 1A products) are not corrected for the main effects listed above: therefore this procedure is **NOT** applicable to these data.

The following table lists all the metadata to be extracted and used for this procedure

| Description                                                                                   | HDF5 Parameter name                           | Symbol used             | Unit    |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|---------|
| Acquisition mode                                                                              | Acquisition Mode                              | A <sub>Mode</sub>       | NA      |
| Reference slant range used in the processing steps                                            | Reference Slant Range                         | R <sub>ref</sub>        | meters  |
| Exponent of the Reference<br>Slant Range used to do the<br>Range Spreading Loss<br>correction | Reference Slant Range Exponent                | R <sub>exp</sub>        | Num     |
| Reference incidence angle used in the processing steps                                        | Reference Incidence Angle                     | $\alpha_{\mathrm{ref}}$ | Deg     |
| Calibration constant<br>(depending on the sensor<br>mode)                                     | Calibration Constant                          | K                       | Num     |
| Rescaling factor applied in the processing steps                                              | Rescaling Factor                              | F                       | Num     |
| Flag indicating if the range spreading loss compensation has been applied                     | Range Spreading Loss Compensation<br>Geometry | Rsl <sub>flag</sub>     | NA      |
| Flag indicating if the Incidence Angle Compensation has been applied                          | Incidence Angle Compensation Geometry         | Inc <sub>flag</sub>     | NA      |
| Flag indicating if the calibration constant has been applied                                  | Calibration Constant Compensation Flag        | $K_{\mathrm{flag}}$     | boolean |

Tab. 2: Parameters used in the radiometric equalization of the COSMO images





The procedure described for CSK is still valid for CSG images.

The only difference is that CSG products, unlike CSK ones, are already calibrated and provided as floating point data format.

For this reason, the user shall consider that:

- The first normalization step for  $R_{ref}$  and sin ( $\alpha_{ref}$ ) are no longer necessary and therefore the tags in question (including  $R_{exp}$ ) have been removed from the product metadata (i.e. if you look for them in the hdf5 file or in the xml you will not find them anymore);
- The Rescaling Factor F is automatically assumed to be 1;
- The Calibration Constant K is equal to 1 and it has already been applied to the products (i.e. Calibration Constant Compensation Flag = 1).

